题目
设两点在抛物线上,是的垂直平分线,(1)当且仅当取何值时,直线经过抛物线的焦点?证明你的结论;(2)当直线的斜率为时,求在轴上的截距的取值范围。
答案:⑴当且仅当时,经过抛物线的焦点 ⑵在轴上截距的取值范围为 解析:(Ⅰ)两点到抛物线的准线的距离相等, ∵抛物线的准线是轴的平行线,,依题意不同时为0 ∴上述条件等价于 ∵ ∴上述条件等价于 即当且仅当时,经过抛物线的焦点。 (Ⅱ)设在轴上的截距为,依题意得的方程为;过点的直线方程可写为,所以满足方程 得 为抛物线上不同的两点等价于上述方程的判别式,即 设的中点的坐标为,则 , 由,得,于是 即得在轴上截距的取值范围为