题目
如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.
答案:证明:∵四边形ABCD是正方形, ∴AB=AD,∠DAB=90°, ∵BF⊥AE,DG⊥AE, ∴∠AFB=∠AGD=∠ADG+∠DAG=90°, ∵∠DAG+∠BAF=90°, ∴∠ADG=∠BAF, 在△BAF和△ADG中, ∵, ∴△BAF≌△ADG(AAS), ∴BF=AG,AF=DG, ∵AG=AF+FG, ∴BF=AG=DG+FG, ∴BF﹣DG=FG. 【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.