题目
(2019·河北中考模拟)矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E. (1)当点F运动到边BC的中点时,求点E的坐标; (2)连接EF,求∠EFC的正切值; (3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
答案:(1)E(2,3);(2);(3). 【解析】 (1)∵OA=3,OB=4, ∴B(4,0),C(4,3), ∵F是BC的中点, ∴F(4,), ∵F在反比例y=函数图象上, ∴k=4×=6, ∴反比例函数的解析式为y=, ∵E点的坐标为3, ∴E(2,3); (2)∵F点的横坐标为4, ∴F(4,), ∴CF=BC﹣BF=3﹣= ∵E的纵坐标为3, ∴E(,3), ∴CE=AC﹣AE=4﹣=, 在Rt△CEF中,tan∠EFC=, (3)如图,由(2)知,CF=,CE=,, 过点E作EH⊥OB于H, ∴EH=OA=3,∠EHG=∠GBF=90°, ∴∠EGH+∠HEG=90°, 由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°, ∴∠EGH+∠BGF=90°, ∴∠HEG=∠BGF, ∵∠EHG=∠GBF=90°, ∴△EHG∽△GBF, ∴, ∴, ∴BG=, 在Rt△FBG中,FG2﹣BF2=BG2, ∴()2﹣()2=, ∴k=, ∴反比例函数解析式为y=. 点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.