题目
设Sn是数列{an}(n∈N*)的前n项和,a1=1,且Sn2=n2an+Sn﹣12,an≠0,n≥2,n∈N*. (1)证明:an+2﹣an=2(n∈N*); (2)若an=log3bn,求数列{an•bn}的前n项和Tn.
答案:解:(1)证明:∵Sn2=n2an+Sn﹣12, ∴n2an=(Sn+Sn﹣1)(Sn﹣Sn﹣1), 即n2an=(Sn+Sn﹣1)an,又∵an≠0, 故Sn+Sn﹣1=n2, 故Sn+1+Sn=(n+1)2, 故an+1+an=2n+1, 故an+2+an+1=2n+3, 故an+2﹣an=2(n∈N*); (2)由题意可解得,a1=1,a2=2, 故an=n, 故log3bn=n, 故bn=3n, 故Tn=1•3+2•32+3•33+…+n•3n, 3Tn=1•32+2•33+3•34+…+n•3n+1, 故2Tn=n•3n+1﹣(3+32+33+…+3n) =n•3n+1﹣ =n•3n+1﹣•3n+1+, 故Tn=.