题目
如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为 (结果用含正整数n的代数式表示)
答案:解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x轴,C3D3⊥x轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4…… ∵点B1在直线l:y=x上,点B1的横坐标为2, ∴点B1的纵坐标为1, 即:OD=2,B1D=1, 图中所有的直角三角形都相似,两条直角边的比都是1:2, ∴点C1的横坐标为:2++()0, 点C2的横坐标为:2++()0+()0×+()1=+()0×+()1 点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2 点C4的横坐标为:=+()0×+()1×+()2×+()3 …… 点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1 =+[()0+()1×+()2+()3+()4……]+()n﹣1 = 故答案为: