题目
是否存在常数a、b,使等式1×n+2(n-1)+3(n-2)+…+(n-2)×3+(n-1)×2+n×1=n(n+a)(n+b)对一切正整数N*成立,证明你的结论.
答案:分析:先取n=1、2,探求a、b的值,然后用数学归纳法证明对一切的n∈N*,a、b所确立的等式都成立.解:令n=1,得1=(1+a)(1+b),令n=2得4=(2+a)(2+b),整理解得a=1,b=2.下面利用数学归纳法证明等式1×n+2(n-1)+3(n-2)+…+(n-2)×3+(n-1)×2+n×1=n(n+1)(n+2).证明:①当n=1时,原等式成立.②假设n=k时,1×k+2(k-1)+3(k-2)+…+(k-2)×3+(k-1)×2+k×1=k(k+1)(k+2)成立.当n=k+1时,1×(k+1)+2(k+1-1)+3(k+1-2)+…+(k+1-2)×3+(k+1-1)×2+(k+1)×1=1×k+2(k-1)+3(k-2)+…+(k-2)×3+(k-1)×2+k×1+1+2+3+…+3+2+1=k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(k+)=(k+1)(k+2)(k+3),即n=k+1时等式成立,由①②,知对任意n∈N*,1×n+2(n-1)+3(n-2)+…+(n-2)×3+(n-1)×2+n×1=n(n+1)(n+2).