题目
如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H. (1)求BE的长; (2)求Rt△ABC与△DEF重叠(阴影)部分的面积.
答案:解:(1)连结OG,如图, ∵∠BAC=90°,AB=4,AC=3,∴BC==5, ∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF, ∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°, ∵EF与半圆O相切于点G, ∴OG⊥EF, ∵AB=4,线段AB为半圆O的直径, ∴OB=OG=2, ∵∠GEO=∠DEF, ∴Rt△EOG∽Rt△EFD, 3′ ∴=,即=,解得OE=, ∴BE=OE﹣OB=﹣2=; (2)BD=DE﹣BE=4﹣=. ∵DF∥AC, ∴,即, 解得:DH=2. ∴S阴影=S△BDH=BD•DH=××2=, 即Rt△ABC与△DEF重叠(阴影)部分的面积为.