题目
已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当l经过圆心C时,求直线l的方程; (2)当弦AB被点P平分时,写出直线l的方程; (3)当直线l的倾斜角为45°时,求弦AB的长.
答案:(1)2x-y-2=0 (2) x-y=0 (3) 解析:(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0. (2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=(x-2),即x+2y-6=0. (3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y-2=x-2,即x-y=0. 圆心到直线l的距离为,圆的半径为3,弦AB的长为.