题目

如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为(  ) A.                        B.                        C.                       D. 答案:B 【解析】 连接OD,由垂径定理得出AB⊥CD,由三角函数求出BH=3,由勾股定理得出DH==4,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得出方程,解方程即可. 【详解】连接OD,如图所示: ∵AB是⊙O的直径,且经过弦CD的中点H, ∴AB⊥CD, ∴∠OHD=∠BHD=90°, ∵sin∠CDB=,BD=5, ∴BH=3, ∴DH==4, 设OH=x,则OD=OB=x+3, 在Rt△ODH中,由勾股定理得:x2+42=(x+3)2, 解得:x=, ∴OH=, ∴AH=OA+OH=+3+=, 故选B. 【点睛】本题考查了垂径定理、勾股定理以及三角函数等知识,正确添加辅助线,熟练应用垂径定理、灵活运用数形结合思想是解题的关键.
数学 试题推荐