题目

若顺次连结四边形各边中点所得的四边形是菱形,则原四边形(  )                  A.一定是矩形            B.一定是菱形                                                C.对角线一定互相垂直                                  D.对角线一定相等           答案:D【考点】中点四边形.                                                                           【分析】首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.                  【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,                                                 ∴EF=FG=CH=EH,BD=2EF,AC=2FG,                                                  ∴BD=AC.                                                                                         ∴原四边形一定是对角线相等的四边形.                                                 故选:D.                                                                                                                                                           【点评】此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.                                                                                                                            
数学 试题推荐