题目
如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点, 交AD于点G,交AB于点F. (1)求证:BC与⊙O相切; (2)当∠BAC=120°时,求∠EFG的度数.
答案:(1)证明:连接OE, ∵AB=AC且D是BC中点,∴AD⊥BC. ∵AE平分∠BAD,∴∠BAE=∠DAE. ∵OA=OE,∴∠OAE=∠OEA.∴∠OEA=∠DAE. ∴OE∥AD.∴OE⊥BC.∴BC是⊙O的切线. (2)∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∴∠EOB =60°. ∴∠EAO =∠EAG =30°.∴∠EFG =30°.