题目
(2019·内蒙古中考模拟)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列四个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN≌△OAD;④AN2+CM2=MN2;其中正确的结论是_____.(填写所有正确结论的序号)
答案:①②④ 【解析】 ∵正方形ABCD中,CD=BC,∠BCD=90°, ∴∠BCN+∠DCN=90°, 又∵CN⊥DM, ∴∠CDM+∠DCN=90°, ∴∠BCN=∠CDM, 在△CNB和△DMC中,, ∴△CNB≌△DMC(ASA),①正确; ∴CM=BN, ∵四边形ABCD是正方形, ∴∠OCM=∠OBN=45°,OC=OB=OD, 在△OCM和△OBN中,, ∴△OCM≌△OBN(SAS), ∴OM=ON,∠COM=∠BON, ∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON, 在△CON和△DOM中,, ∴△CON≌△DOM(SAS),②正确; ∵∠BON+∠BOM=∠COM+∠BOM=90°, ∴∠MON=90°,即△MON是等腰直角三角形, 又∵△AOD是等腰直角三角形, ∴△OMN∽△OAD,③不正确; ∵AB=BC,CM=BN, ∴BM=AN, ,④正确; 故答案为①②④. 【点睛】 此题属于四边形的综合题考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质注意掌握全等三角形的判定与性质是解此题的关键.