题目
已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,同时点Q从点B开始沿BC边向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,设运动时间为x秒, (1)求几秒后,△PBQ的面积等于6cm2? (2)求几秒后,PQ的长度等于5cm? (3)运动过程中,△PQB的面积能否等于8cm2?说明理由.
答案: 26.解:(1)=×(5﹣x)×2x=6 整理得:x2﹣5x+6=0 解得:x1=2,x2=3 ∴2或3秒后△PBQ的面积等于6cm2 . (2)当PQ=5时,在Rt△PBQ中, ∵BP2+BQ2=PQ2, ∴(5﹣x)2+(2x)2=52, 5x2﹣10x=0, x(5x﹣10)=0, x1=0,x2=2, ∴当x=0或2时,PQ的长度等于5cm. (3)假设△PQB的面积等于8cm2则: ×(5﹣x)×2x=8. 整理得:x2﹣5x+8=0 △=25﹣32=﹣7<0. ∴△PQB的面积不能等于8cm2.