题目

如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是多少? 答案:7【考点】相似三角形的判定与性质. 【分析】根据题意,易得△CDF与四边形AFEB的面积相等,再根据相似三角形的相似比求得它们的面积关系比,从而求DF的长, 【解答】解:∵△ABC与△DEC的面积相等, ∴△CDF与四边形AFEB的面积相等, ∵AB∥DE, ∴△CEF∽△CBA, ∵EF=9,AB=12, ∴EF:AB=9:12=3:4, ∴△CEF和△CBA的面积比=9:16, 设△CEF的面积为9k,则四边形AFEB的面积=7k, ∵△CDF与四边形AFEB的面积相等, ∴S△CDF=7k, ∵△CDF与△CEF是同高不同底的三角形, ∴面积比等于底之比, ∴DF:EF=7k:9k, ∴DF=7. 故答案为7.  
数学 试题推荐