题目
如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0). (1)求点B的坐标; (2)已知a=1,C为抛物线与y轴的交点,若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标.
答案:(1)(1,0)(2)(4,21)或(﹣4,5) 【解析】 【分析】 (1)由抛物线y=ax2+bx+c的对称轴为直线x=﹣1,交x轴于A、B两点,其中A点的坐标为(﹣3,0),根据二次函数的对称性,即可求得B点的坐标; (2)a=1时,先由对称轴为直线x=﹣1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x﹣3,得到C点坐标,然后设P点坐标为(x,x2+2x﹣3),根据S△POC=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标. 【详解】 (1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点, ∴A、B两点关于直线x=﹣1对称, ∵点A的坐标为(﹣3,0), ∴点B的坐标为(1,0); (2)∵a=1时,抛物线y=x2+bx+c的对称轴为直线x=﹣1, ∴=﹣1,解得b=2. 将B(1,0)代入y=x2+2x+c, 得1+2+c=0,解得c=﹣3. 则二次函数的解析式为y=x2+2x﹣3, ∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3. 设P点坐标为(x,x2+2x﹣3), ∵S△POC=4S△BOC, ∴×3×|x|=4××3×1, ∴|x|=4,x=±4. 当x=4时,x2+2x﹣3=16+8﹣3=21; 当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5. ∴点P的坐标为(4,21)或(﹣4,5). 【点睛】 此题考查了抛物线与x轴的交点,待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征以及三角形的面积.此题难度适中,解题的关键是求出点C的坐标.