题目

如图,在正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=a. (1)求证:AD⊥B1D; (2)求证:A1C∥平面AB1D; (3)求三棱锥C-AB1D的体积. 答案:[解析] (1)证明:∵ABC-A1B1C1是正三棱柱, ∴BB1⊥平面ABC, ∵AD⊂平面ABC.∴AD⊥BB1. 又∵△ABC是正三角形,D是BC的中点,∴AD⊥BC. 又∵BC∩BB1=B, ∴AD⊥平面B1BCC1. 又∵B1D⊂平面B1BCC1, ∴AD⊥B1D. (2)证明:连接A1B,设A1B∩AB1=E,连接DE. ∵AA1=AB,∴四边形A1ABB1是正方形, ∴E是A1B的中点, 又∵D是BC的中点, ∴DE∥A1C. ∵DE⊂平面AB1D,A1C⊄平面AB1D, ∴A1C∥平面AB1D. (3)解:VC-AB1D=VB1-ADC=S△ADC·|BB1|=a3.
数学 试题推荐
最近更新