题目

已知点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在直线PQ上,且·=0,又=-.(1)当点P在y轴上移动时,求点M的轨迹C的方程;(2)若直线l:y=k(x-1)(k>2)与轨迹C交于A、B两点,AB中点N到直线3x+4y+m=0(m>-3)的距离为,求m的取值范围. 答案:解:(1)设M(x,y).由=-,得P(0,-),Q(,0).由·=0(3,-)·(x,y)=0y2=4x(x>0).                                          (2)联立y=k(x-1)(k>2)与y2=4x,消去y,得k2x2-2(k2+2)x+k2=0.                                                                                  由N是AB中点N(,).                                                                               又由已知=|++m+3|=1.∵k>2,m>-3,∴++m+3=1.令=t,则0<t<.又m=-6t2-8t-2-<m<-2.结合m>-3,∴-3<m<-2.
数学 试题推荐