题目
甲、乙两队参加奥运知识竞赛.每队3人,每人回答一个问题,答对者为本队赢得一分, 答错得零分,假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,, 且各人回答正确与否相互之间没有影响.用表示甲队的总得分 (I)求随机变量的分布列和数学期望; (Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB)。
答案: 解:(Ⅰ)解法一:有题意知:的可能取值为1,1,2,3,且 所以的分布列为 0 1 2 3 的数学期望为 . 解法二:根据题设可知,~B,因此的分布列为 因为~B,所以。 (Ⅱ)解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以 由互斥事件的概率公式得 . 解法二:用表示“甲队得k分”这一事件,用Bk表示“乙队得k分”这一事件,k=0,2,2,3。由于事件,为互斥事件,故有 由题设可知,事件A3与B0 独立,事件A2与B1独立,因此 = =.