题目
如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为 .
答案: (,2)或(﹣,2) . 【考点】直线与圆的位置关系;二次函数图象上点的坐标特征. 【分析】当⊙P与x轴相切时,点P的纵坐标是2或﹣2,把点P的坐标坐标代入函数解析式,即可求得相应的横坐标. 【解答】解:依题意,可设P(x,2)或P(x,﹣2). ①当P的坐标是(x,2)时,将其代入y=x2﹣1,得 2=x2﹣1, 解得x=±, 此时P(,2)或(﹣,2); ②当P的坐标是(x,﹣2)时,将其代入y=x2﹣1,得 ﹣2=x2﹣1,即﹣1=x2 无解. 综上所述,符合条件的点P的坐标是(,2)或(﹣,2); 故答案是:(,2)或(﹣,2). 【点评】本题考查了直线与圆的位置关系,二次函数图象上点的坐标特征.解题时,为了防止漏解或错解,一定要分类讨论.