题目
如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).
答案:【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题. 【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题. 【解答】解:如图作BN⊥CD于N,BM⊥AC于M. 在RT△BDN中,BD=30,BN:ND=1:, ∴BN=15,DN=15, ∵∠C=∠CMB=∠CNB=90°, ∴四边形CMBN是矩形, ∴CM=BM=15,BM=CN=60﹣15=45, 在RT△ABM中,tan∠ABM==, ∴AM=27, ∴AC=AM+CM=15+27.