题目

如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向. (1)线段BQ与PQ是否相等?请说明理由; (2)求A,B间的距离.(参考数据cos41°≈0.75) 答案:       解:(1)线段BQ与PQ相等. 证明:∵∠PQB=90°﹣41°=49°, ∠BPQ=90°﹣24.5°=65.5°, ∴∠PBQ=180°﹣49°﹣65.5°=65.5°, ∴∠BPQ=∠PBQ, ∴BQ=PQ; (2)∠AQB=180°﹣49°﹣41°=90°, ∠PQA=90°﹣49°=41°, ∴AQ===1600, BQ=PQ=1200, ∴AB2=AQ2+BQ2=16002+12002, ∴AB=2000, 答:A、B的距离为2000m.
数学 试题推荐