题目
已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=-3. (1)试证明函数y=f(x)是R上的单调减函数;(2)试证明函数y=f(x)是奇函数;(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.
答案:剖析:(1)可根据函数单调性的定义进行论证,考虑证明过程中如何利用题设条件. (2)可根据函数奇偶性的定义进行证明,应由条件先得到f(0)=0后,再利用条件f(x1+x2)=f(x1)+f(x2)中x1、x2的任意性,可使结论得证. (3)由(1)的结论可知f(m)、f(n)分别是函数y=f(x)在[m、n]上的最大值与最小值,故求出f(m)与f(n)就可得所求值域.(1)证明:任取x1、x2∈R,且x1<x2,f(x2)=f[x1+(x2-x1)], 于是由题设条件f(x+x′)=f(x)+f(x′)可知f(x2)=f(x1)+f(x2-x1). ∵x2>x1, ∴x2-x1>0. ∴f(x2-x1)<0. ∴f(x2)=f(x1)+f(x2-x1)<f(x1). 故函数y=f(x)是单调减函数.(2)证明:∵对任意x、x′∈R均有f(x+x′)=f(x)+f(x′), ∴若令x=x′=0,则f(0)=f(0)+f(0). ∴f(0)=0. 再令x′=-x, 则可得f(0)=f(x)+f(-x). ∵f(0)=0, ∴f(-x)=-f(x). 故y=f(x)是奇函数.(3)解:由函数y=f(x)是R上的单调减函数, ∴y=f(x)在[m,n]上也为单调减函数. ∴y=f(x)在[m,n]上的最大值为f(m),最小值为f(n). ∴f(n)=f[1+(n-1)]=f(1)+f(n-1)=2f(1)+f(n-2)=…=nf(1). 同理,f(m)=mf(1). ∵f(3)=-3, ∴f(3)=3f(1)=-3. ∴f(1)=-1. ∴f(m)=-m,f(n)=-n. 因此,函数y=f(x)在[m,n]上的值域为[-n,-m].讲评:(1)满足题设条件f(x+x′)=f(x)+f(x′)的函数,只要其定义域是关于原点对称的,它就为奇函数. (2)若将题设条件中的x>0,均有f(x)<0改成均有f(x)>0,则函数f(x)就是R上的单调增函数. (3)若题设条件中的m、n∈Z去掉,则我们就无法求出f(m)与f(n)的值,故m、n∈Z不可少.