题目
在△ABC中,已知∠C=90°,sinA+sinB=,则sinA﹣sinB= .
答案:考点: 互余两角三角函数的关系. 分析: 根据互余两角的三角函数关系,将sinA+sinB平方,把sin2A+cos2A=1,sinB=cosA代入求出2sinAcosA的值,代入即可求解. 解答: 解:(sinA+sinB)2=()2, ∵sinB=cosA, ∴sin2A+cos2A+2sinAcosA=, ∴2sinAcosA=﹣1=, 则(sinA﹣sinB)2=sin2A+cos2A﹣2sinAcosA=1﹣=, ∴sinA﹣sinB=±. 故答案为:±. 点评: 本题考查了互余两角的三角函数关系,属于基础题,掌握互余两角三角函数的关系是解答本题的关键.