题目

已知函数且. (1)求a; (2)证明:存在唯一的极大值点,且. 答案:【解析】 ⑴ 因为,,所以. 令,则,, 当时,,单调递减,但,时,; 当时,令,得. 当时,,单调减;当时,,单调增. 若,则在上单调减,; 若,则在上单调增,; 若,则,. 综上,. ⑵ ,,. 令,则,. 令得, 当时,,单调递减;当时,,单调递增. 所以,. 因为,,,, 所以在和上,即各有一个零点. 设在和上的零点分别为,因为在上单调减, 所以当时,,单调增;当时,,单调减.因此,是的极大值点. 因为,在上单调增,所以当时,,单调减,时,单调增,因此是的极小值点. 所以,有唯一的极大值点. 由前面的证明可知,,则. 因为,所以,则 又,因为,所以. 因此,.
数学 试题推荐