题目

如图,半径为的与边长为的正方形的边相切于E,点F为正方形的中心,直线过点.当正方形沿直线以每秒的速度向左运动__________秒时,与正方形重叠部分的面积为. 答案:1或. 【解析】 将正方形向左平移,使得正方形与圆的重叠部分为弓形,根据题目数据求得此时弓形面积符合题意,由此得到OF的长度,然后结合运动速度求解即可,特别要注意的是正方形沿直线运动,所以需要分类讨论. 【详解】 解:①当正方形运动到如图1位置,连接OA,OB,AB交OF于点E 此时正方形与圆的重叠部分的面积为S扇形OAB-S△OAB 由题意可知:OA=OB=AB=2,OF⊥AB ∴△OAB为等边三角形 ∴∠AOB=60°,OE⊥AB 在Rt△AOE中,∠AOE=30°,∴AE=,OE= ∴S扇形OAB-S△OAB ∴OF= ∴点F向左运动个单位 所以此时运动时间为秒 ②同理,当正方形运动到如图2位置,连接OC,OD,CD交OF于点E 此时正方形与圆的重叠部分的面积为S扇形OCD-S△OCD 由题意可知:OC=OD=CD=2,OF⊥CD ∴△OCD为等边三角形 ∴∠COD=60°,OE⊥CD 在Rt△COE中,∠COE=30°,∴CE=,OE= ∴S扇形OCD-S△OCD ∴OF= ∴点F向左运动个单位 所以此时运动时间为秒 综上,当运动时间为1或秒时,⊙O与正方形重叠部分的面积为 故答案为:1或. 【点睛】 本题考查正方形的性质,扇形面积的计算及等边三角形的判定和性质,题目难度不大,注意分情况讨论是本题的解题关键.
数学 试题推荐
最近更新