题目
如图,在棱台中,与分别是棱长为1与2的正三角形,平面平面,四边形为直角梯形,,点为的重心,为中点,, (1)当时,求证://平面; (2)若直线与所成角为,试求二面角的余弦值.
答案:解:(Ⅰ)连延长交于, 因为点为的重心,所以 又,所以,所以//;···················3(分) 为中点,为中点, //,又//, 所以//,得四点共面 //平面··································6(分) (Ⅱ)平面平面,平面,连接易得, 以为原点,为x轴,为y轴,为z轴建立空间直角坐标系, 则,设, , , 因为与所成角为,所以, 得,,,··············8(分) 设平面的法向量,则,取, 平面的法向量,所以二面角的余弦值····················12(分)