题目

先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值. 答案:【解答】解:∵|x﹣2|+(y+1)2=0, ∴x﹣2=0,y+1=0, 解得,x=2,y=﹣1, ∴[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x =(9x2﹣4y2+4y2﹣6xy+2xy﹣3x2)÷4x =(6x2﹣4xy)÷4x =1.5x﹣y =1.5×2﹣(﹣1) =3+1 =4.
数学 试题推荐