题目
如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?
答案:解:BE与DF平行.理由如下: 由n边形内角和公式可得四边形内角和为(4-2)×180°=360°. ∵∠A=∠C=90°, ∴∠ADC+∠ABC=180°. ∵BE平分∠ABC,DF平分∠ADC, ∴∠ADF=∠ADC,∠ABE=∠ABC. ∵∠BFD是三角形ADF的外角, ∴∠BFD=∠A+∠ADF. ∴∠BFD+∠ABE=∠A+∠ADC+∠ABC=∠A+(∠ADC+∠ABC)=90°+90°=180°. ∴BE与DF平行.