题目

设Sn,Tn分别为下列表格中的两个等差数列{an},{bn}的前n项和.n1234567…an531-1-3-5-7…bn-14-10-6-22610…(1)请求出S1,S2,S4,S5和T2,T3,T5,T6;(2)根据上述结果,对于存在正整数k满足ak+ak+1=0的等差数列{an}的前n项和Sn(n≤2k-1)的规律,猜想一个正确的结论,并加以证明. 答案:解:(1)数列{an}中,a1=5,公差d=-2.∴Sn=na1+d=5n+×(-2)=-n2+6n,∴S1=5,S2=8,S4=8,S5=5.                                                         数列{bn}中,b1=-14,d′=4.∴Tn=-14n+×4=2n2-16n,∴T2=-24,T3=-30,T5=-30,T6=-24.                                                  (2)若ak+ak+1=0,则Sk+n=Sk-n(或Sn=S2k-n)(n≤2k-1,k>n).证明如下:∵{an}是等差数列,∴Sk-n-Sk+n=(k-n)a1+d-(k+n)a1=-2na1+[(k-n)2-k+n-(k+n)2+k+n]=-2na1+(k2-2kn+n2+n-k2-2kn-n2+n)=-2na1+(-4kn+2n)=-2na1+dn(1-2k).                                            又∵ak+ak+1=0,∴a1+(k-1)d+a1+kd=0,d=,∴Sk-n-Sk+n=-2na1+(1-2k)=0,即Sk-n=Sk+n.
数学 试题推荐