题目
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分) 由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f –1(x)能确定数列{bn},bn= f –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”. (1)若函数f(x)=确定数列{an}的自反数列为{bn},求an; (2)在(1)条件下,记为正数数列{xn}的调和平均数,若dn=,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求; (3)已知正数数列{cn}的前n项之和 求Tn表达式.
答案:解:(1)由题意的:f –1(x)== f(x)=,所以p =-1,…………2分 所以an=………………………………………………………………………3分翰林汇 (2)an=,,…………………………………………4分 为数列{dn}的前n项和,,……………………………………5分 又Hn为数列{Sn}的调和平均数, 所以………8分 ………………………………………………………10分 (3)因为正数数列{cn}的前n项之和 所以解之得:c1=1,T1=1……………………………………11分 当 ……………………………………14分 所以,累加得: ………………………………………………16分 …………………18分