题目
(1)设x≥1,y≥1,证明:x+y+≤++xy; (2)设1<a≤b≤c,证明:logab+logbc+logca≤logba+logcb+logac.
答案:证明 (1)由于x≥1,y≥1,所以x+y+≤++xy⇔xy(x+y)+1≤y+x+(xy)2. 所以[y+x+(xy)2]-[xy(x+y)+1] =[(xy)2-1]-[xy(x+y)-(x+y)] =(xy+1)(xy-1)-(x+y)(xy-1) =(xy-1)(xy-x-y+1) =(xy-1)(x-1)(y-1). 既然x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立. (2)设logab=x,logbc=y,由对数的换底公式,得 logca=,logba=,logcb=,logac=xy. 于是,所要证明的不等式即为x+y+≤++xy,其中x=logab≥1,y=logbc≥1. 故由(1)可知所要证明的不等式成立.