题目
设f(x)=x﹣sinx,则f(x)( ) A.既是奇函数又是减函数 B.既是奇函数又是增函数 C.是有零点的减函数 D.是没有零点的奇函数
答案:B【考点】函数的单调性与导数的关系;正弦函数的奇偶性;正弦函数的单调性. 【专题】三角函数的图像与性质. 【分析】利用函数的奇偶性的定义判断f(x)为奇函数,再利用导数研究函数的单调性,从而得出结论. 【解答】解:由于f(x)=x﹣sinx的定义域为R,且满足f(﹣x)=﹣x+sinx=﹣f(x), 可得f(x)为奇函数. 再根据f′(x)=1﹣cosx≥0,可得f(x)为增函数, 故选:B. 【点评】本题主要考查函数的奇偶性的判断方法,利用导数研究函数的单调性,属于基础题.