题目

 如图,△ABC内接于⊙O,弦AC交直径BD于点E,AG⊥BD于点G,延长AG交BC于点F.  求证:AB2=BF·BC.  答案:证明:延长AF,交⊙O于H.∵直径BD⊥AH,∴= .                         ……………………2分∴∠C=∠BAF.                                    ………………………3分 在△ABF和△CBA中,∵∠BAF =∠C,∠ABF=∠CBA,∴△ABF∽△CBA.                    …………………………………………4分∴,即AB2=BF×BC.         …………………………………………5分证明2:连结AD,∵BD是直径,∴∠BAG+∠DAG=90°.                   ……………………1分∵AG⊥BD,∴∠DAG+∠D=90°.∴∠BAF =∠BAG =∠D.                                ……………………2分又∵∠C =∠D,                           ∴∠BAF=∠C.                                      ………………………3分 解析:略 
数学 试题推荐