题目
(本小题满分16分) 已知椭圆:的离心率为,直线:与椭圆相切. (1)求椭圆的方程; (2)设椭圆的左焦点为,右焦点为,直线过点且垂直与椭圆的长轴,动直线垂直于直线于点,线段的垂直平分线交于点,求点的轨迹的方程; (3)若,,是上不同的点,且,求实数的取值范围.
答案:(本小题满分16分) 解:(1)因为,所以, 椭圆的方程可设为·····································2分 与直线方程联立,消去,可得, 因为直线与椭圆相切,所以, 又因为,所以, 所以,椭圆的方程为;····································4分 (2)由题意可知,, 又为点到直线的距离,·······································5分 所以,点到直线的距离与到点的距离相等,即点的轨迹是以直线为准线,点为焦点的抛物线,···········································7分 因为直线的方程为,点的坐标为, 所以,点的轨迹的方程为;································9分 (3)由题意可知点坐标为·········································10分 因为,所以, 即···································11分 又因为, 所以, 因为,所以,····················13分 方法一:整理可得:, 关于的方程有不为2的解,所以 ,且 所以, 且 解得的取值范围为或.······················16分 方法二:整理可得:, 当时, 又因为,所以 当时, 所以,的取值范围为或.····················16分