题目

(本小题满分16分) 已知椭圆:的离心率为,直线:与椭圆相切. (1)求椭圆的方程; (2)设椭圆的左焦点为,右焦点为,直线过点且垂直与椭圆的长轴,动直线垂直于直线于点,线段的垂直平分线交于点,求点的轨迹的方程; (3)若,,是上不同的点,且,求实数的取值范围. 答案:(本小题满分16分) 解:(1)因为,所以,       椭圆的方程可设为·····································2分       与直线方程联立,消去,可得,       因为直线与椭圆相切,所以,       又因为,所以,       所以,椭圆的方程为;····································4分  (2)由题意可知,,       又为点到直线的距离,·······································5分         所以,点到直线的距离与到点的距离相等,即点的轨迹是以直线为准线,点为焦点的抛物线,···········································7分       因为直线的方程为,点的坐标为,       所以,点的轨迹的方程为;································9分  (3)由题意可知点坐标为·········································10分       因为,所以,       即···································11分       又因为,       所以,       因为,所以,····················13分       方法一:整理可得:,               关于的方程有不为2的解,所以                    ,且               所以, 且               解得的取值范围为或.······················16分       方法二:整理可得:,               当时,                 又因为,所以               当时,               所以,的取值范围为或.····················16分
数学 试题推荐