题目

交5元钱,可以参加一次摸奖,一袋中有完全相同的球10个,其中有8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和.求抽奖人获利的数学期望. 答案:思路分析: 抽到的2个球上的钱数之和ξ是个随机变量,其中每一个ξ取值时所代表的随机事件的概率值是容易获得的,本题的目标是求参加摸奖的人获利η的数学期望.由ξ与η的关系η=ξ-5,利用公式Eη=Eξ-5可得. 解:设ξ为抽到的2个球上的钱数之和,则ξ的取值如下:ξ=2(抽到2个1元),ξ=6(抽到1个1元,1个5元),ξ=10(抽到2个5元).所以,由题意:P(ξ=2)=,P(ξ=6)=,P(ξ=10)=,Eξ=2×,又设η为抽奖者获利可能值,则η=ξ-5.所以抽奖者获利的期望为:Eη=Eξ-5==-1.4.    误区警示 要分清是谁获利,不能忽视了条件是先交5元钱才能参加这一抽奖.因此,不能只计算Eξ,最终Eη的结果出现负值,说明摸奖者若重复这种抽奖,平均每摸一次要亏1.4元.
数学 试题推荐