题目

如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF..1.求证:ΔBEF∽ΔCEG.2.当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.3.设BE=x,△DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?  答案: 1.因为四边形ABCD是平行四边形, 所以 ···················································· 1分  所以所以2.的周长之和为定值.··································································· 4分理由一:过点C作FG的平行线交直线AB于H ,因为GF⊥AB,所以四边形FHCG为矩形.所以 FH=CG,FG=CH因此,的周长之和等于BC+CH+BH  由  BC=10,AB=5,AM=4,可得CH=8,BH=6,所以BC+CH+BH=24 ······························································································ 6分理由二:由AB=5,AM=4,可知   在Rt△BEF与Rt△GCE中,有:,所以,△BEF的周长是, △ECG的周长是又BE+CE=10,因此的周长之和是24.3.设BE=x,则所以 ···································· 8分配方得:. 所以,当时,y有最大值.············································································ 10分最大值为. 解析:略 
数学 试题推荐