题目
如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则= .
答案: 【解答】解:连接GE. ∵点E是CD的中点,∴EC=DE. ∵将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,∴EF=DE,∠BFE=90°.在Rt△EDG和Rt△EFG中 ,∴Rt△EDG≌Rt△EFG(HL),∴FG=DG. ∵=,∴设DG=FG=a,则AG=7a,故AD=BC=8a,则BG=BF+FG=9a,∴AB==4a,故==. 故答案为:.