题目
如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( ) A.C、E B.E、F C.G、C、E D.E、C、F
答案:D 【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解. 解析:经实验或按下方法可求得顶点C,E和F棋子不可能停到. 设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格, 因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格, 这时P是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时, k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋, 若7<k≤2020, 设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1), 由此可知,停棋的情形与k=t时相同, 故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到. 故选:D.