题目
如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断: ①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是( ) A.①②③ B.①③④ C.①②④ D.②③④
答案:B【考点】二次函数图象与系数的关系. 【专题】压轴题;数形结合. 【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断. 【解答】解:∵抛物线的对称轴是直线x=﹣1, ∴﹣=﹣1, b=2a, ∴b﹣2a=0, 故①正确; ∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0), ∴抛物线和x轴的另一个交点是(﹣4,0), ∴把x=﹣2代入得:y=4a﹣2b+c>0, 故②错误; ∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0, 又∵b=2a, ∴c=﹣4a﹣2b=﹣8a, ∴a﹣b+c=a﹣2a﹣8a=﹣9a, 故③正确; 根据图象,可知抛物线对称轴的右边y随x的增大而减小, ∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1, ∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1), ∵(,y2),1<, ∴y1>y2, 故④正确; 即正确的有①③④, 故选:B. 【点评】此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.