题目

已知函数f(x)=x+2x,g(x)=x+lnx,h(x)=x--1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是(  ) A.x1<x2<x3                                                   B.x2<x1<x3 C.x1<x3<x2                                                   D.x3<x2<x1 答案: A [解析] 令f(x)=x+2x=0,因为2x恒大于零, 所以要使得x+2x=0,x必须小于零,即x1<0; 令g(x)=x+lnx=0,要使得lnx有意义,则x必须大于零,又x+lnx=0所以lnx<0,解得0<x<1, 即0<x2<1; 令h(x)=x--1=0,得x=+1>1,即x3>1, 从而可知x1<x2<x3.
数学 试题推荐