题目
已知数列{an}满足an+1=an+2n+1,a1=1,则a5= .
答案: 25 . 【考点】8H:数列递推式. 【分析】an+1=an+2n+1,可得an﹣an﹣1=2(n﹣1)+1.(n≥2).利用累加求和实数即可得出. 【解答】解:∵an+1=an+2n+1,∴an﹣an﹣1=2(n﹣1)+1.(n≥2). ∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1 =2(n﹣1)+1+2(n﹣2)+1+…+2+1+1 =2×+n=n2. 则a5=25.