题目
17.已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值;(Ⅱ)求().
答案:17.本小题考查数列求和以及极限的基本概念和运算,考查综合分析的能力. 解:(Ⅰ)设该等差数列为{an},则a1=a,a2=4,a3=3a,Sk=2550.由已知有a+3a = 2×4,解得首项a1 = a = 2,公差d = a2-a1= 4-2=2. 代入公式Sk= k×a1+×d得 k×2+×2 = 2550.即 k2+k-2550 = 0,解得 k = 50,k = -51(舍去).∴ a = 2,k = 50 (Ⅱ)由Sn=n×a1+×d得Sn=n(n+1),∴ = = ∴