题目

如图10-11,四棱锥P—ABCD的底面是正方形,PA⊥底面ABCD,AE⊥PD,EF∥CD,AM=EF。   (1)证明MF是异面直线AB与PC的公垂线;  (2)若PA=3AB,求直线AC与平面EAM所成角的正弦值。 答案:(2)解法一:连接BD交AC于O,连接BE,过O作OH⊥BE,H为垂足,∵AE⊥PD,CD⊥PD,EF∥CD,∴EF⊥PD,PD⊥平面MAE,又OH⊥BE,∴OH∥DE,∴OH⊥平面MAE。连接AH,则∠HAO是直线AC与平面MAE所成的角,设AB=a则PA=3a,AO=AC=,因Rt△ADE~Rt△PDA,故ED=从而Rt△AHO中,sin∠HAO=  
数学 试题推荐