题目
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布. (1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望; (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得,,其中为抽取的第个零件的尺寸,. 用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01). 附:若随机变量服从正态分布,则, ,.
答案:解:(1) 由题意可得,X满足二项分布, 因此可得 (2) 由(1)可得,属于小概率事件, 故而如果出现的零件,需要进行检查。 由题意可得, 故而在范围外存在9.22这一个数据,因此需要进行检查。 此时:, 。