题目
如图,在直三棱柱ABC-A1B1C1中,平面ABC⊥侧面A1ABB1. (Ⅰ)求证:AB⊥BC; (Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以证明.
答案: (Ⅰ)证明:如下图,过点A在平面A1ABB1内作AD⊥A1B于D,则由平面A1BC⊥侧面A1ABB1,且平面A1BC侧面A1ABB1=A1B,得AD⊥平面A1BC,又BC平面A1BC, 所以AD⊥BC. 因为三棱柱ABC―A1B1C1是直三棱柱, 则AA1⊥底面ABC, 所以AA1⊥BC. 又AA1AD=A,从而BC⊥侧面A1ABB1, 又AB侧面A1ABB1,故AB⊥BC. (Ⅱ)解法1:连接CD,则由(Ⅰ)知是直线AC与平面A1BC所成的角, 是二面角A1―BC―A的平面角,即 于是在Rt△ADC中,在Rt△ADB中, 由AB<AC,得又所以 解法2:由(Ⅰ)知,以点B为坐标原点,以BC、BA、BB1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系, 设AA1=a,AC=b,AB=c,则 B(0,0,0), A(0,c,0), 于是 设平面A1BC的一个法向量为n=(x,y,z),则 由得 可取n=(0,-a,c),于是,与n的夹角为锐角,则与互为余角. 所以 于是由c<b,得 即又所以