题目

如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN. (1)求证:∠PNM=2∠CBN; (2)求线段AP的长. 答案:       (1)由MN∥BC,易得∠CBN=∠MNB,由已知∠PNB=3∠CBN,根据角的和差不难得出结论; (2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,由(1)知∠PNM=2∠CBN=2∠PAN,由AD∥MN,可知∠PAN=∠ANM,所以∠PAN=∠PNA,根据等角对等边得到AP=PN,再用勾股定理列方程求出AP. 解答:    解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点, ∴MN∥BC, ∴∠CBN=∠MNB, ∵∠PNB=3∠CBN, ∴∠PNM=2∠CBN; (2)连接AN, 根据矩形的轴对称性,可知∠PAN=∠CBN, ∵MN∥AD, ∴∠PAN=∠ANM, 由(1)知∠PNM=2∠CBN, ∴∠PAN=∠PNA, ∴AP=PN, ∵AB=CD=4,M,N分别为AB,CD的中点, ∴DN=2, 设AP=x,则PD=6﹣x, 在Rt△PDN中 PD2+DN2=PN2, ∴(6﹣x)2+22=x2, 解得:x= 所以AP=.
数学 试题推荐