题目
已知sinβ=m·sin(2α+β),求证:tan(α+β)=tanα.
答案:证明:由sinβ=msin(2α+β)sin[(α+β)-α]=msin[(α+β)+α]sin(α+β)cosα-cos(α+β)sinα=m[sin(α+β)cosα+cos(α+β)sinα](1-m)·sin(α+β)cosα=(1+m)·cos(α+β)sinαtan(α+β)=tanα.点评:仔细观察已知式与所证式中的角,不要盲目展开,要有的放矢,看到已知式中的2α+β可化为结论式中的α+β与α的和,不妨将α+β作为一整体来处理.此方法是综合法,利用综合法证明恒等式时,必须有分析的基础,才能顺利完成证明.