题目
如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 .
答案: 2 . 【考点】反比例函数系数k的几何意义. 【专题】压轴题. 【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断. 【解答】解:过A点作AE⊥y轴,垂足为E, ∵点A在双曲线上, ∴四边形AEOD的面积为1, ∵点B在双曲线y=上,且AB∥x轴, ∴四边形BEOC的面积为3, ∴四边形ABCD为矩形,则它的面积为3﹣1=2. 故答案为:2. 【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.