题目

16.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.(Ⅰ)求数列{an}的通项公式;(Ⅱ)令bn=an·3n,求数列{bn}前n项和的公式. 答案:16.(Ⅰ)解:设数列{an}的公差为d,则a1+a2+a3=3a1+3d=12,又a1=2,得d=2.所以an=2n. (Ⅱ)解:由bn=an·3n=2n3n,得Sn=2·3+4·32+…+(2n-2)·3n-1+2n·3n,                                 ①3Sn=2·32+4·33+…+(2n-2)·3n+2n·3n+1.                                 ②将①式减去②式,得-2Sn=2(3+32+…+3n)-2n·3n+1=3(3n-1)-2n·3n+1, 所以Sn=+n·3n+1.
数学 试题推荐