题目

如图,▱ABCD中,点E,F在对角线BD上,且BE=DF,求证: (1)AE=CF; (2)四边形AECF是平行四边形. 答案:【考点】平行四边形的判定与性质;全等三角形的判定与性质. 【专题】证明题. 【分析】(1)根据平行四边形的性质可得AB=CD,AB∥CD,然后可证明∠ABE=∠CDF,再利用SAS来判定△ABE≌△DCF,从而得出AE=CF. (2)首先根据全等三角形的性质可得∠AEB=∠CFD,根据等角的补角相等可得∠AEF=∠CFE,然后证明AE∥CF,从而可得四边形AECF是平行四边形. 【解答】证明:(1)∵四边形ABCD是平行四边形, ∴AB=CD,AB∥CD. ∴∠ABE=∠CDF. 在△ABE和△CDF中, , ∴△ABE≌△DCF(SAS). ∴AE=CF. (2)∵△ABE≌△DCF, ∴∠AEB=∠CFD, ∴∠AEF=∠CFE, ∴AE∥CF, ∵AE=CF, ∴四边形AECF是平行四边形. 【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.  
数学 试题推荐
最近更新